
SOLVE2000:

Some Proposed Changes In Solve

John M. Gipson

USNO

December 4, 1998

Some Current Problems in Solve:
1. Hard to understand.

2. Hard to maintain.

3. Hard to extend.

4. Hard to use.

5. Slow(er than it needs to be.)

Primary Cause of Problems:
1. Child of many parents

2. Computer limitations at time written.

3. Memory expensive, size of programs limited.

4. Operating systems changed over time.

5. Compilers changed over time.

6. Computers changed over time.

7. Problems changed over time.

Secondary Causes of Problems
1. Inconsistent programming styles, naming conven-

tions, etc.

2. Obsolete code. Much of the code solves (program-
ming and other) problems that no longer exist.

3. Archaic data structures, e.g., Holleriths.

4. Unnessarily short names, subroutines. No need to
restrict to 6 characters. (Example: What does de-
par do?)

5. Extensive use of bit arrays to save space.

6. Obscure code. (e.g., how do you tell which pa-
rameters are arc, which global?

7. Implicit data structure. Data structure hard wired
into solve.

8. Too many programs because of initial size limita-
tions (ADDER/XDDER).

9. Too few subroutines. Unnecesary duplication of
code. Leads to inconsistencies, hard to maintain.

All this leads to current situation in
solve:

1. Hard to understand.

2. Hard to maintain.

3. Hard to extend.

4. Hard to use.

5. Slow(er than it needs to be.)

Examples:
1. Obscure code: How do you find out which pa-

rameters are arc parameters? A.) Find all parame-
ters. B.) Turn off arc parameters. C.) Find all
parameters. D.) Compare results of A& B.

2. Hard to extend: Difficulty of incorporating piece-
wise linear gradients.

3. Hard to extend: Difficulty of combining VLBI&
GPS data in solve. Easy to do outside of solve. Af-
ter 3 months of effort, task abandoned because
bookkeeping became to onerous.

Some (Not All) Solutions
1. Better coding standards.

2. Different data structure.

3. Alternate fast matrix inversion.

Better Coding in Solve

Documentation of algorithms.

Documentation of mathematical algorithms used in
solve. L. Petrov and myself regularly produced memos
on what we did in solve. Such memos should be
gathered in a central place, and perhaps placed on the
web.

References in the code referring to external
documentation. This is done regularly in CALC.

Documentation of programs.

External documentation about what each module in
solve does.

Program flow is poorly documented, somewhat of a
mystery to even expert users. Currently no flowchart
of all the modules. Such a flow chart would aid in
debugging and understanding.

Subroutine documentation and library.

Proposal: Have a central reposity which describes
what all the subroutines do in solve, and their calling
conventions. This does not exist. As a consequence,
each person has their own collection of favorite
routines. I frequently write routines on the fly because
I don't know what is available.

Style Manual

Consistency improves maintainability, and is
something to strive for.

Everyone has their own coding style, which is more or
less consistent. There is currently no attempt to
enforce/encourage consistency between programmers.

Proposal: Style manual which specifies variable
naming conventions, and formatting conventions. One
possibility: adopt Hungarian notation widely used in C
programming.

Purge the code of obsolete constructs or usage, such as
Holleriths.

Solve Data Structure
Solve knows deep in the code that you are dealing with
VLBI data. This makes it very difficult to combine
VLBI data with other data types (GPS, SLR).

Because of memory limitations at the time the code
was written, much of the data structure is determined
by bit arrays. These are hard for a human to decode.

Currently the kind and order of partials is hard wired
in solve. In global solutions this leads to reordering as
new parameters are added, which is costly in terms of
time.

In a word, most of the data structure is implicit.

Proposal: New explicit data structure.
Specify all solve parameters completely by an ascii
string:

Geo. Part. | Time Part. | Epoch | Start Time | End Time | Aux Info

Examples:
Gilcreek Atm |Pwise Linear|9401121800|94011121700|9401121930|

Gilcreek Atm |Diurnal |9401121800|94011121700|9401121930|

Kokee U Pos|Diurnal |9401121800|94011121700|9401121930|

UT1 |Poly 0 |9401121800|94011121700|9401121930|

UT1 |Poly 1 |9401121800|94011121700|9401121930|

UT1 |Tidal |9401121800|94011121700|9401121930|0 0 0 0 0 -1

Motivation:

Natural. This representation mimics the functional
form of the partials:

Partial = Geom_partial × Time_partial

Advantages of new data structure.
1. Makes explicit the partial. Current scheme hides

this information. When this information is re-
quired, which it often is, you must call get_names.
(At GSFC parms was replaced by routine
get_names in 1996. get_names returns ascii strings
instead of holleriths but is otherwise the same as
parms.)

2. Bookkeeping derived from partial names. Cur-
rently several parts of the code need to know the
order of the partials to do their bookkeeping cor-
rectly. Hence if you add new partials, need to make
changes in several places.

3. No duplication of code. The new scheme would
automatically use same code for
atmosphere/clocks/eop time partials.

4. Automatically ensures consistency of code. Fix a
bug once, instead of many times.

5. Easy to modify time behavior of partial. For ex-
ample, to estimate piece-wise linear gradients, all
you need to do is generate the appropriate ascii

strings. Same would go for piecewise linear station
positions.

6. Data combination easier since all the information
about the partial is in one place. Don't need to
force solve to think that GPS or SLR data is really
VLBI data.

7. No distinction between global and arc parameters
since the parameter list specifies the time interval.
Makes it easier to force continuity across day
changes.

8. Data combination with VLBI, SLR is easier, since
all the information about the partials is in one
place.

9. Contribution of observations to most partials is
only for a limited time.

Don't have to calculate null-partials. (From
parameter list know which data contributes to
which partial.)

Don't have to update normal equations with 0.

Can squeeze out partials when we are done with
them.

Alternative Fast Matrix Inversion
L. Petrov's scheme relies on intimate knowledge of
structure of normal equations. It knows that we
estimate (only) clocks, atmospheres and EOP as
piecewise linear functions. It also knows where these
occur in the parameter list.

I propose a new scheme. Called "Ordered Matrix
Inversion" or OMI. Besides the normal matrices N and
A, this uses as input two auxiliary arrays:

tbeg: Time when a parameter turns on.

tend: Time when a parameter turns off.

Broadly speaking, this scheme inverts the normal
equations in time order, squeezing out parameters as
they are turned off.

In the simplest form, this scheme can be applied to
invert the normal equations of a single arc, or do the
necessary inversion for arcpe.

A more ambitious proposal would use this scheme to
do all of the matrix inversion in solve.

Ordered Matrix Inversion
Consider the normal equations for a particular arc. We
want to squeeze out parameters which are no longer
on. Let these parameters which we want to squeeze
out be denoted by "a" where the a stands for current
arc. Label the parameters which the a couple to by "g"
(=current global). The remaining parameters are
labeled by "r". The normal equations are:

Ngg Ngr Nga

Nrg Nrr 0
Nag 0 Naa

Ag

Ar

Aa

=

Bg

Br

Ba

Where each of the N's are matrices, and the A's and B's
are vectors. We can "squeeze out" the arc parameters.
The reduced normal equations are:

Ngg − NgaNaa
−1Nag Ngr

Nrg Nrr

Ag

Ar

=

Bg − [NgaNaa
−1]Ba

Br

The solution for the arc parameters is:

Aa = Naa
−1Ba − [Naa

−1Nag]Ag

The covariance matrix of the full system can be found
from the covariance matrix of the reduced system.

Let

Cov(g, r) ≡

Ngg − NgaNaa
−1Nag Ngr

Nrg Nrr

−1

=

Mgg Mgr

Mrg Mrr

Then:

Cov(g, r,a) =

Mgg Mgr −Mgg[NgaNaa
−1]

Mrg Mrr −Mgr[NgaNaa
−1]

... ... Naa
−1 + [Naa

−1Nga]Mgg[NgaNaa
−1]

Proof: Left to the reader.

Can build up the covariance matrix step by step (if it is
desired).

Comments:

1. To calculate the reduced normal equations need to
calculate and Naa

−1 NgaNaa
−1

2. The matrices in [...] are related by transposition.

3. This process can be repeated again.

4. At the very end of the forward direction we have a
solution for the remaining current-global parame-
ters, and the associated covariance. These parame-
ters all parameters which were on at the end of the
experiment. Frequently this is all we want.

5. If we want to, we can find the solution for the arc
parameters one level up without any further ma-
trix inversion.

6. Each step can be done in place:

Naa ← Naa
−1

Ba ← Naa
−1Ba

Nga ← NgaNaa
−1

General scheme for fast matrix inversion
in solve.

1. Proceed in time order, starting at earliest time, and
proceeding to last time.

2. Build up normal equation in time order. This uses
the tbeg array.

3. As parameters turn off, squeeze them out. This
uses tend array.

4. At end of forward solution, are left with "global"
parameters, and parameters which were on at the
end of the experiment. Invert reduced normal
equations.

5. If we want rest of parameters, do back solution.

If we want covariance matrix of rest of parameters,
also do back solution for these.

Timing Considerations
For simplicity assume that we have number ofNarc

"arcs", and each arc involves parameters. AssumeNA

each arc couples only to its neighbors. Also assume we
have parameters which are on for the wholeNG

experiment. The total number of parameters is:

NTot = NG + Narc × NA

The time it takes standard solve to invert the normal
equations goes like:

Tsolve ∼ NTot
3 /2

One can show that the time it takes for the forward
solution in the proposed scheme is:

TForward ∼ NTot × (2NA + NG)2/2

Hence the ratio is:

TForward/Tsolve =

2NA+NG

NT

2

≈

2
Narc

2

This ignores overhead, and implies speedups of upto
100 or more, which is unrealistic. But experimental
tests indicate that the speedup is substantial.

For many purposes you don't need the back solution
with the full covariance matrix. If you need this, then
you can show that

TBack/Tsolve =

2NA+NG

NT

 ≈

2

Narc

This is much faster than standard solve.

Does this proposed algorithm work?
Yes

I have implemented this algorithm in both norml and
arcpe. Source is in:

leo://data18/mk3/src/solve/norml_fast_jmg

leo://data18/mk3/src/solve/arcpe_fast_jmg

There are several modes of running, depending on
whether you want full covariance, approximate
covariance, or minimal covariance (only the
parameters on at the end of the experiment.)

For one of the CONT94 experiments, the speedup of
the matrix inversion for the combined solution
(forward and back) was a factor of 8 faster than
standard solve. Namely 2 seconds vs 16 secs.

Speed is comparable to L. Petrov's technique.

No attempt has been made to speed up internal code,
e.g., matrix multiplications could be done using vector
instruction set.

tb, te arrays made by calling get_names, and then
finding on and off times by looking at parameter
names. This leads to correct results in 90% of the

cases, but leads to errors in some cases because of
inconsistencies in converting from Julian date to Year,
month, hour,minute second. Because of this I had to
include checks to make sure the results were correct.
This also slows down the algorithm.

Code spends a fair amount of time reordering data at
the end. This could be eliminated if we went with
"explicit parameter labeling". All that would need to
be done in this case would be to re-order the parameter
list.

Advantages of OMI Algorithm
1. Logic is simple and direct.

2. Requires minimimal modifications to solve. (Just
need time arrays.)

3. All bookkeeping done within routine.

4. Easily adapted to do standard arcpe.

5. No restrictions on functional form of partials, i.e.,
piecewise linear with commensurate rate breaks
for clocks, atmospheres and EOP.

6. If we estimated new piecewise linear functions,
would handle it automatically.

Further extensions.
1. Reading and using sinex files/geodyn files.

2. Unification of global/arc parameters. Once a pa-
rameter is done, it is squeezed out. Easier to have
multi-arc parameters.

3. Ability to turn off/on parameter estimation w/o re-
generating normal equations. For example, base-
line and TRF solutions could be generated from a
single CGM. This would ensure consistency.

4. Ability to use Kalman filter for some or all of the
parameters.

